Exam. Code : 103205
 Subject Code : 1203

B.A./B.Sc. 5 ${ }^{\text {th }}$ Semester MATHEMATICS
 Paper-I (Dynamics)

Time Allowed-3 Hours] [Maximum Marks-50
Note :- Attempt five questions in all selecting at least two from each section.

SECTION-A

1. (a) A point moving with uniform acceleration in a straight line describes equal distances in time
t_{1}, t_{2}, t_{3}; show that $\frac{1}{t_{1}}-\frac{1}{t_{2}}+\frac{1}{t_{3}}=\frac{3}{t_{1}+t_{2}+t_{3}}$.
(b) $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are three points vertically below the point O such that $O A=A B=B C$. If the particle falls from rest at O, prove that the times of describing OA, AB and BC are as $1:(\sqrt{2}-1):(\sqrt{3}-\sqrt{2})$.
2. Masses P and Q in a Atwood's machine are allowed to move from rest any distance x . If P is greater than Q , show that the mass which must suddenly be removed from P at the end of distance x , so that the motion in the same sense may continue a further distance $n x$, is

$$
\begin{equation*}
\frac{(\mathrm{n}+1)\left(\mathrm{P}^{2}-\mathrm{Q}^{2}\right)}{(\mathrm{n}+1) \mathrm{P}+(\mathrm{n}-1) \mathrm{Q}} . \tag{10}
\end{equation*}
$$

3. (a) Two masses m_{1}, m_{2} are connected by an inelastic string; m_{2} is placed on a smooth horizontal table and the string passes over a light smooth pulley at the edge of the table and m_{1} is hanging freely. Determine the motion and the tension in the string. Find also the pressure on the pulley.
(b) A body sliding down a smooth inclined plane is observed to cover equal distances, each equal to l, in consecutive intervals of time t_{1} and t_{2}. Show that inclination of the plane is $\sin ^{-1}\left[\frac{2 \ell\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)}{\mathrm{gt}_{1} \mathrm{t}_{2}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)}\right]$.
4. (a) A particle starts from rest and moves along a straight line with an acceleration f varying as t^{n}. If v be the velocity at a distance s from the starting point, show that $(n+1) v^{2}=(n+2) f s$.
(b) A particle free to move along the x -axis is subjected to a force $\mathrm{mF}_{0} \cos \mathrm{pt}$ acting along x -axis. At $\mathrm{t}=0, \mathrm{x}=0$ and $\mathrm{v}=0$. Show that at any time $\mathrm{t}, \mathrm{x}=\frac{\mathrm{F}_{0}}{\mathrm{p}^{2}}(1-\cos \mathrm{pt})$. Here m is the mass of the particle. F_{0} and p are constants.
5. A particle is performing simple harmonic motion of period T about a centre O and it passes through the position $\mathrm{P}(\mathrm{OP}=\mathrm{b})$ with velocity v in the direction OP. Prove that the time which elapses before it comes

$$
\begin{equation*}
\text { to } P \text { is } \frac{T}{\pi} \tan ^{-1} \frac{\mathrm{vT}}{2 \pi \mathrm{~b}} \text {. } \tag{10}
\end{equation*}
$$

271(2119)/HH-8977
(Contd.)

SECTION-B

6. (a) A particle is projected with velocity u so that its range on a horizontal plane is twice the greatest height attained. Show that range is $\frac{4 u^{2}}{5 \mathrm{~g}}$.
(b) The maximum height of a projectile is h and angle of projection is α. Find out the difference of time when it is at height of $h \sin ^{2} \alpha$. 5,5
7. A particle is projected from O at an elevation α and after time t, the particle is at P. Prove that $\tan \beta=\frac{1}{2}(\tan \alpha+\tan \theta)$ where β and θ are respectively the inclinations to the horizontal of OP and of the direction of motion of the particle when at P. 10
8. (a) A train of mass M kg is ascending a smooth incline of 1 in n and when the velocity of the train is $\mathrm{vm} / \mathrm{sec}$, its acceleration is $\mathrm{f} \mathrm{m} / \mathrm{sec}^{2}$. Prove that the effective power of the engine is $\frac{\mathrm{Mv}(\mathrm{nf}+\mathrm{g})}{\mathrm{n}}$ watts.
(b) Prove that the kinetic energy of a particle of mass m moving with a magnitude of velocity v is $\frac{1}{2} \mathrm{mv}^{2}$.
9. A particle of mass m is tied to the middle point of an elastic string of natural length $2 l$ and modulus λ. The ends of the string are tied to two points on a smooth horizontal table distant $2 \mathrm{~L}(\mathrm{~L}>l)$. Find the period of small oscillation (i) along the string (ii) perpendicular to the string.
10. A pendulum of length l hangs against a wall inclined at an angle α to the horizontal. Show that the time of complete oscillation is $2 \pi \sqrt{\frac{\ell}{\mathrm{~g} \sin \alpha}}$.
